
INTEGRATED CIRCUITS

Product specification Supersedes data of 2001 Dec 12

2002 Sep 09

HILIP

CONTENT	ſS	8	LIMITING VALUES
1	FEATURES	9	HANDLING
1.1	Single frequency conversion FM receiver	10	THERMAL CHARACTERISTICS
1.1	Receiver baseband	11	CHARACTERISTICS
1.3	Synthesizer	12	PACKAGE OUTLINE
1.4	Transmitter	13	SOLDERING
1.5	Transmitter baseband		
1.6	Microcontroller interface	13.1	Introduction to soldering surface mount packages
1.7	Power supplies	13.2	Reflow soldering
2	APPLICATIONS	13.3	Wave soldering
3	GENERAL DESCRIPTION	13.4	Manual soldering
4	ORDERING INFORMATION	13.5	Suitability of surface mount IC packages for
5	BLOCK DIAGRAM		wave and reflow soldering methods
6	PINNING	14	DATA SHEET STATUS
7	FUNCTIONAL DESCRIPTION	15	DEFINITIONS
7.1	Power supply and power management	16	DISCLAIMERS
7.1.1	Power supply		
7.1.2	Power saving		
7.1.3	Current consumption		
7.2	FM receiver		
7.2.1	Data comparator		
7.3	Transmitter		
7.4	Synthesizer		
7.4.1	Calculation example		
7.5	Receiver baseband		
7.6	TX baseband		
7.7	Voltage regulator		
7.8	Low-battery detection		
7.9 7.9.1	Microcontroller interface Data registers		
7.9.2	Active modes		
7.9.3	Clock output divider		
7.9.4	FM-PLL centre frequency		
7.9.5	TX and RX gain control registers		
7.9.6	Carrier detector threshold programming		
7.9.7	Low-battery detection		
7.9.8	Power amplifier output level		
7.9.9	PLL charge pump current		
7.9.10	Volume control		
7.9.11	Crystal tuning capacitors		
7.9.12	Voltage reference adjustment		
7.9.13	Test mode		

UAA3515A

1 FEATURES

1.1 Single frequency conversion FM receiver

- Integrated Low Noise Amplifier (LNA)
- Image reject mixer
- FM detector (10.7 MHz) with:
 - IF limiter
 - wide band PLL demodulator
 - output amplifier
 - Received Signal Strength Indicator (RSSI) output.
- Carrier Detector (CD) with programmable threshold
- Programmable data amplifier (slicer) phase.

1.2 Receiver baseband

- Programmable receiver gain
- Expander
- Earpiece amplifier with volume control feature
- Data amplifier.

1.3 Synthesizer

- Crystal reference oscillator with integrated tuning capacitor
- Reference frequency divider
- Narrow band receiver PLL including VCO with integrated variable capacitance diodes
- Narrow band transmitter PLL including VCO with integrated variable capacitance diodes
- Integrated VCO circuits designed to function with external inductors etched directly as part of the printed-circuit board (cost-saving feature)
- Programmable clock divider with output buffer to drive the microcontroller.

1.4 Transmitter

- Internal buffered Power Amplifier (PA) with programmable gain
- Data transmission summing amplifier.

1.5 Transmitter baseband

- Programmable transmitter gain
- Microphone amplifier
- Compressor with Automatic Level Control (ALC) and hard limiter.

1.6 Microcontroller interface

• Three-wire serial interface.

1.7 Power supplies

- Voltage regulator for internal PLL supplies
- Selectable voltage doubler
- Programmable Low-Battery Detection (LBD) (time-multiplexed with RSSI carrier detector).

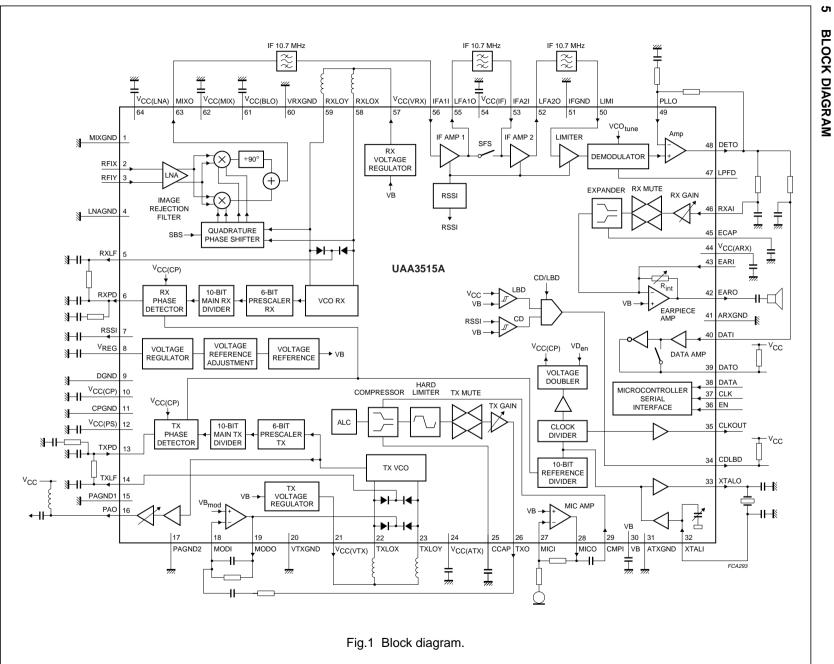
2 APPLICATIONS

• Analog cordless telephone sets (900 MHz).

3 GENERAL DESCRIPTION

The UAA3515A is a BiCMOS integrated circuit that performs all functions from antenna to microcontroller in reception and transmission for both base station and handset of a 900 MHz cordless telephone set. In addition, the implemented programming reduces significantly the amount of external components, board space and external adjustments required.

TYPE		PACKAGE					
NUMBER	NAME	DESCRIPTION	VERSION				
UAA3515AHL	LQFP64	plastic, low profile quad flat package; 64 leads; body 10 \times 10 \times 1.4 mm	SOT314-2				


4 ORDERING INFORMATION

Product specification

900 MHz analog cordless telephone IC

UAA3515A

4

2002 Sep 09

_

UAA3515A

6 PINNING

SYMBOL	PIN	DESCRIPTION
MIXGND	1	mixer ground
RFIX	2	LNA voltage (X) input
RFIY	3	LNA voltage (Y) input
LNAGND	4	LNA ground
RXLF	5	RX PLL filter output
RXPD	6	RX phase detector voltage output
RSSI	7	RSSI output
V _{REG}	8	pin for internal voltage regulator
DGND	9	digital ground
V _{CC(CP)}	10	internal voltage doubler supply voltage (or positive supply voltage input) for charge pumps
CPGND	11	charge pump ground
V _{CC(PS)}	12	prescaler positive supply voltage input
TXPD	13	TX phase detector voltage input
TXLF	14	TX PLL filter output
PAGND1	15	power amplifier ground 1
PAO	16	power amplifier output
PAGND2	17	power amplifier ground 2
MODI	18	summing amplifier input
MODO	19	summing amplifier output
VTXGND	20	transmitter VCO ground
V _{CC(VTX)}	21	transmitter VCO positive supply voltage input
TXLOX	22	transmitter VCO voltage (X) to external inductor
TXLOY	23	transmitter VCO voltage (Y) to external inductor
V _{CC(ATX)}	24	transmitter audio positive supply voltage input
CCAP	25	external capacitor for compressor
ТХО	26	audio transmitter output
MICI	27	microphone amplifier input
MICO	28	microphone amplifier output
CMPI	29	compressor input
VB	30	reference voltage
ATXGND	31	transmitter audio ground
XTALI	32	crystal input
XTALO	33	crystal output
CDLBD	34	CD or LBD open collector output (out-of-lock synthesizer receiver and/or transmitter in test mode)
CLKOUT	35	clock output (CMOS levels)
EN	36	enable input for serial interface
CLK	37	clock input for serial interface
DATA	38	data input for serial interface

SYMBOL	PIN	DESCRIPTION
DATO	39	data amplifier open collector output
DATI	40	data amplifier input
ARXGND	41	audio receiver ground
EARO	42	earpiece amplifier output
EARI	43	earpiece amplifier input
V _{CC(ARX)}	44	audio receiver positive supply voltage input
ECAP	45	external capacitor for expander
RXAI	46	audio receiver input
LPFD	47	demodulator loop filter output
DETO	48	demodulator amplifier output
PLLO	49	demodulator amplifier negative input
LIMI	50	limiter input
IFGND	51	IF negative supply voltage
IFA2O	52	IF second amplifier output
IFA2I	53	IF second amplifier input
V _{CC(IF)}	54	IF positive supply voltage input
IFA1O	55	IF first amplifier output
IFA1I	56	IF first amplifier input
V _{CC(VRX)}	57	receiver VCO positive supply voltage input
RXLOX	58	receiver VCO voltage (X) to external inductor
RXLOY	59	receiver VCO voltage (Y) to external inductor
VRXGND	60	receiver VCO ground
V _{CC(BLO)}	61	receiver LO buffer positive supply voltage input
V _{CC(MIX)}	62	mixers positive supply voltage input
MIXO	63	mixer output
V _{CC(LNA)}	64	LNA positive supply voltage input

36 EN

35 CLKOUT

34 CDLBD

33 XTALO

FCA294

32

XTALI

ATXGND

٧B

UAA3515A 61 VCC(BLO) 60 VRXGND 57 VCC(VRX) 62 VCC(MIX) 64 VCC(LNA) 59 RXLOY 58 RXLOX 54 VCC(IF) 53 IFA21 52 IFA20 63 MIXO 55 IFA10 56 IFA11 51 IFGND PLLO LIMI 49 48 DETO MIXGND 1 47 LPFD RFIX 2 RFIY 3 46 RXAI LNAGND 4 45 ECAP 44 V_{CC(ARX)} RXLF 5 RXPD 6 43 EARI RSSI 7 42 EARO 41 ARXGND V_{REG} 8 UAA3515AHL DGND 9 40 DATI V_{CC(CP)} 10 39 DATO CPGND 11 38 DATA 37 CLK V_{CC(PS)} 12

900 MHz analog cordless telephone IC

TXPD 13 TXLF 14

PAGND1 15

PAO 16

18

MODI MODO

19

17

PAGND2

20

VTXGND [Vcc(VTX)

3 22

TXLOX ΤΧLΟΥ

Fig.2 Pin configuration.

CCAP [

TXO MICI

VCC(ATX)

28 29 30 31

MICO

CMPI

27

23 24 25 26

UAA3515A

7 FUNCTIONAL DESCRIPTION

7.1 Power supply and power management

7.1.1 POWER SUPPLY

The UAA3515A is used in a cordless telephone handset and in a base unit. The handset unit is battery powered and operates on three NiCd cells. The minimum supply voltage (V_{CC}) is 2.9 V.

7.1.2 POWER SAVING

When the UAA3515A is used in a handset, it is important to minimize current consumption. The main operating modes are:

- · Active mode (talk): all blocks are powered
- RX mode: all circuits in the receiver part are powered

• Inactive mode: with the exception of the microcontroller interface, all circuits are powered-down. The crystal reference oscillator, the output clock buffer, the voltage regulator and the voltage doubler can be disabled separately. To reduce microcontroller current consumption, the crystal frequency to the clock output can be divided by 128. A low current consumption mode for the crystal oscillator can be programmed.

Latch memory is maintained in all modes. Blocks that are powered are shown in Table 1 per operating mode.

The crystal oscillator, the clock output buffer, the voltage reference adjustment, the power amplifier, the voltage doubler, the earpiece, the hard limiter and the ALC can be activated separately. Blocks that can be activated in each mode are shown in Table 2.

CIRCUIT BLOCK	ACTIVE MODE	RX MODE	INACTIVE MODE
Voltage reference adjustment	power ON	power ON	power OFF
RF receiver	power ON	power ON	power OFF
RX PLL	power ON	power ON	power OFF
RX and TX audio paths	power ON	power OFF	power OFF
RF TX (and PA, when enabled)	power ON	power OFF	power OFF

Table 2Powered circuit blocks

Table 1 Power operating modes

CIRCUIT BLOCK	ACTIVE MODE	RX MODE	INACTIVE MODE
Crystal oscillator; note 1	power ON	power ON	power ON
Clock output buffer	power ON	power ON	power ON
Voltage reference enable; note 2	power ON	power ON	power ON
Power amplifier (PA2 = 1)	power ON	power OFF	power OFF
Voltage doubler enable; note 3	power ON	power ON	power ON
Hard limiter and ALC not disabled	power ON	power OFF	power OFF
Earpiece amplifier (earpiece enable = 1); note 4	power ON	power ON	power OFF

Notes

- 1. In RX and active mode, the crystal oscillator is activated automatically. An external frequency can be forced at the crystal pins XTALI and XTALO.
- 2. In RX and active mode, the voltage reference is enabled automatically (whether bit V_{REG} enable is logic 0 or 1).
- 3. If the voltage doubler is enabled, the crystal oscillator is activated automatically.
- 4. In inactive mode the amplifier is disabled automatically.

UAA3515A

7.1.3 CURRENT CONSUMPTION

The control bit values for selection of each mode and typical current consumption for the modes are shown in Table 3.

When clock out is activated there is an extra power demand proportional to the programmed output level (see Table 4 for examples). When bit Xtal high = 0 (oscillator is in low current consumption mode), the crystal in use must have losses less than 20 Ω to ensure oscillator start-up.

Table 3Typical current consumption

 $V_{CC} = 3.3 \text{ V}; \text{ T}_{amb} = 25 \text{ }^{\circ}\text{C}; \text{ f}_{(i)xtal} = 10.24 \text{ MHz}.$

POWER OPERATING MODE	CONDITIONS	TYPICAL CURRENT CONSUMPTION
Active mode		76 mA
RX mode		58 mA
Inactive mode	xtal active = 0; V_{REG} enable = 0; note 1	<10 μA
	xtal active = 1; V_{REG} enable = 0; Xtal high = 0; note 1	230 μΑ
	xtal active = 1; V _{REG} enable = 0; Xtal high = 1; note 1	330 μΑ
	xtal active = 1; V_{REG} enable = 1; Xtal high = 1; note 1	550 μΑ
	xtal active = 1; V_{REG} enable = 1; Xtal high = 0; note 2	690 μA

Notes

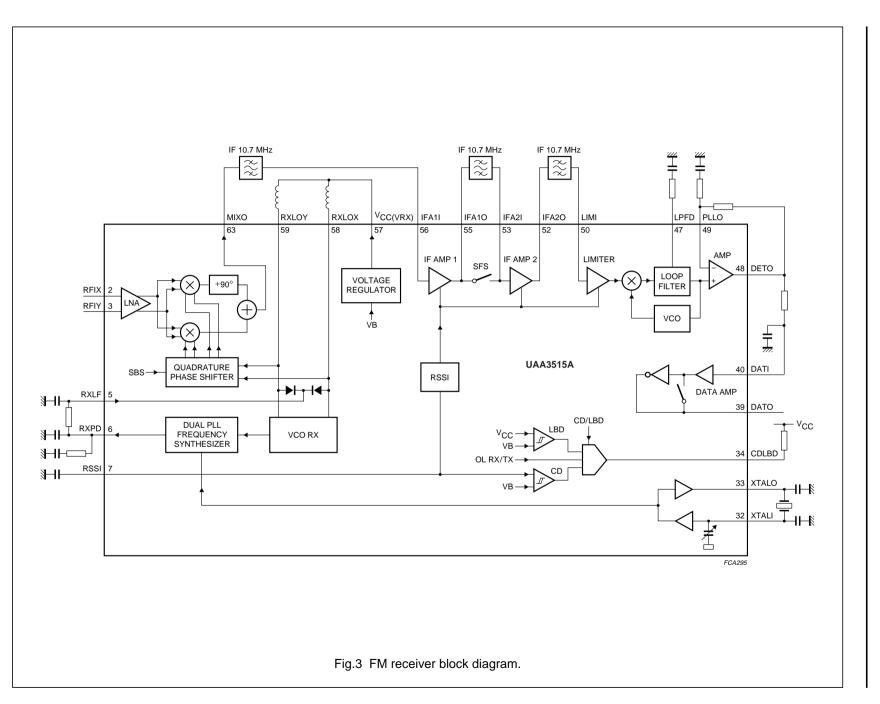
- 1. Voltage doubler and clock output buffer disabled.
- 2. Voltage doubler enabled, clock output buffer disabled.

Table 4 Examples of additional current consumption

 $V_{CC} = 3.3 \text{ V}; T_{amb} = 25 \text{ °C}; f_{(i)xtal} = 10.24 \text{ MHz}; C_{L(CLKOUT)} = 14 \text{ pF}.$

DIVIDER RATIO	CURRENT CONSUMPTION ADDITIONAL TO TYPICAL VALUE							
DIVIDER RATIO	CLKO level = 0	CLKO level = 1						
1, 2, 2.5, 4 or 128	770 μΑ	530 μΑ						
off	0	0						

7.2 FM receiver


The FM receiver (see Fig.3) has a single frequency conversion architecture with integrated image rejection mixer that makes an external RF filter unnecessary. The Side Band Select (SBS) feature allows choice of frequency for RXLO to be in or out of the ISM band allowing use of the same IC type for both base station and handset. IF channel filtering (a compromise between price and performance) can be implemented by simply using two or three external 10.7 MHz filters. The integrated FM PLL demodulator with limiter decreases significantly the number of pins and external components required.

Philips Semiconductors

Product specification

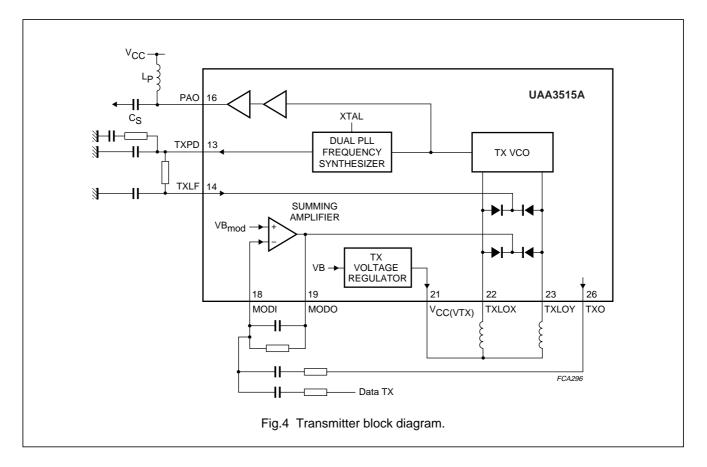
900 MHz analog cordless telephone IC

UAA3515A

2002 Sep 09

_

10


UAA3515A

7.2.1 DATA COMPARATOR

The data comparator is an inverting hysteresis comparator. An external bandpass filter is connected between pins DETO and DATI (AC-coupled). The open-collector output is current limited to control the output signal slew rate. An external resistor of 180 k Ω should be connected between pin DATO and V_{CC}. An external capacitor in parallel with this resistor will reduce the slew rate.

7.3 Transmitter

The transmitter architecture is of the direct modulation type. The transmit VCO can be frequency modulated by speech or data (see Fig.4). An amplifier sums the modulating signal with the data TX signal before the VCO. Frequency control is affected by integrated variable capacitance diodes. To obtain the correct frequency, external inductors in series with the bonding wires and leadframe are required. The power amplifier is capable of driving a 50 Ω load. The level of the output signal PAO is programmed with two bits via the serial bus interface.

7.4 Synthesizer

The crystal local oscillator and reference divider (see Fig.5) provide the reference frequency for the RX and TX PLLs. The 10-bit reference divider is programmed with respect to the crystal frequency and the desired RX and TX frequencies. The microcontroller operating frequency of 4.096 MHz is derived from a 16.384 MHz crystal frequency. The clock divider ratio can be programmed to 1, 2, 2.5, 4 or to 128; ratio 128 is chosen in sleep mode to save current in the microcontroller section. Clock output (pin CLKOUT) is an emitter follower output.

The 16-bit TX counter is programmed for the desired transmit channel frequency. Similarly, the 16-bit RX counter is programmed for the desired local oscillator frequency. The divider counter comprises a 6-bit prescaler with division ratios (R) from 64 to 127, and a 10-bit CMOS divider with division ratios (C) from 8 to 1023. The full counter provides division ratios from 512 to 65535. Settings of RX and TX counters are calculated as follows:

$$C = int \frac{M}{64}$$

$$\mathsf{R} = \mathsf{M} - \mathsf{C} \times 64$$

(where M is the division ratio between VCO frequency and the reference frequency).

7.4.1 CALCULATION EXAMPLE

Given:

RF input frequency $f_{i(RF)} = 903 \text{ MHz}$

VCO RX f_{VCO(RX)} = 892.3 MHz

f_{IF} = 10.7 MHz

VCO TX f_{VCO(TX)} = 925.6 MHz

Internal comparison frequency = 20 kHz(f_{XTAL} = 10.24 MHz)

We have:

Reference divider = 512 (100000000)

$$M RX = \frac{892.3 \times 10^6}{20 \times 10^3} = 44615$$

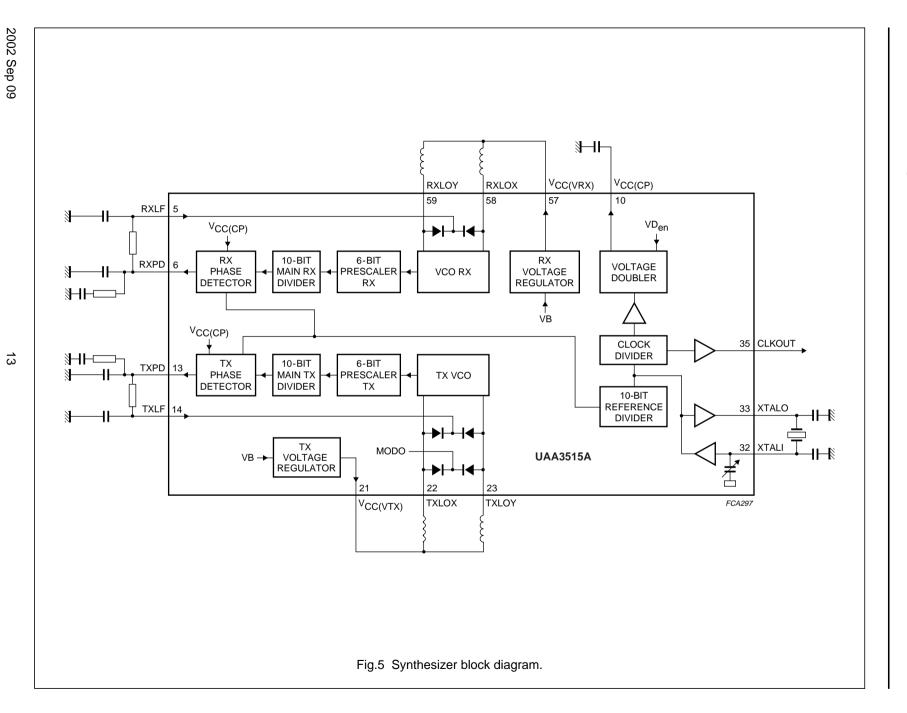
C RX = 697 (1010111001) and R RX = 7 (000111)

and

$$M TX = \frac{925.6 \times 10^6}{20 \times 10^3} = 46280$$

C TX = 723 (1011010011) and R TX = 8 (001000)

VCOs and variable capacitance diodes are integrated. Resonance inductors are shared between bonding wires, leadframe of the package and external inductors. Costs can be reduced by etching external inductors directly onto the printed-circuit board.


An on-chip selectable voltage doubler is provided to enable a larger tuning range of both VCOs. The phase detectors have current drive type outputs with selection possibilities between 400 and 800 μ A.

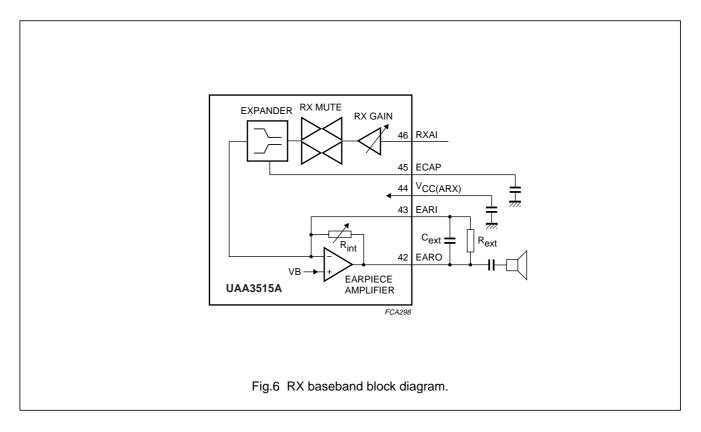
Philips Semiconductors

Product specification

900 MHz analog cordless telephone IC

UAA3515A

_

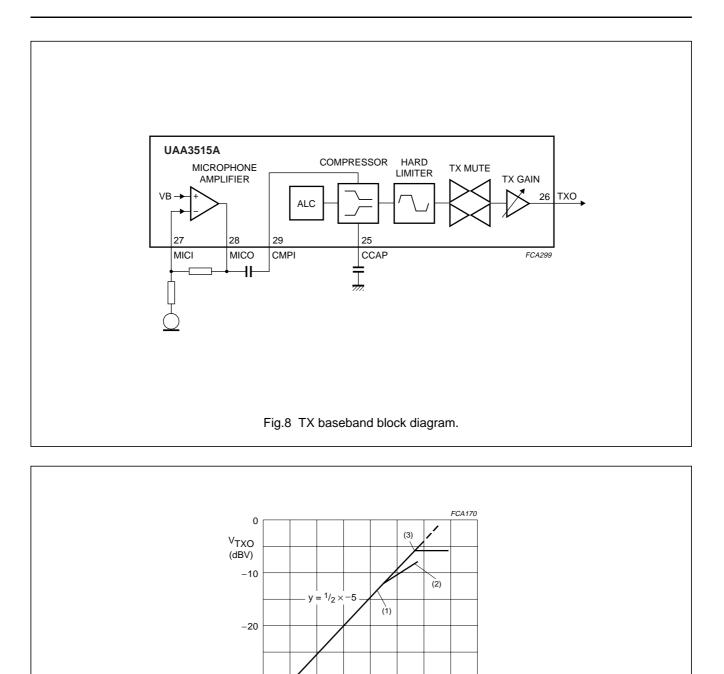

7.5 Receiver baseband

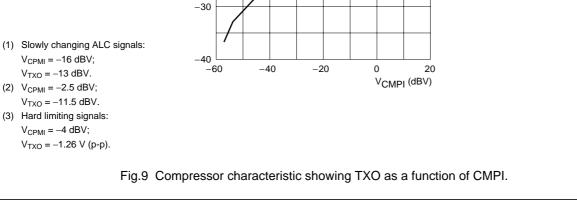
This section covers the RX audio path from pins RXAI to EARO (see Fig.6). The RXAI input signal is AC-coupled.

The microcontroller sets the value of the RX gain in 32 linear steps of 0.5 dB. The RX baseband has a mute function and an expander with characteristics as shown in Fig.7.

For audio level adjustment and, potentially for software volume control, setting the RX gain provides a dynamic range of 31 dB. This is achieved by the expander slope that multiplies the RX gain by a factor of two for each gain step thus giving 1 dB steps measured at the earpiece amplifier output.

The earpiece amplifier is a rail-to-rail inverting operational amplifier. The non-inverting input is connected to the internal reference voltage at pin VB. Software volume control on the earpiece amplifier is achieved by using an integrated switched feedback resistor R_{int} . The volume control tuning range is 14 dB. Hardware volume control is achieved by switching externally the earpiece feedback resistor R_{ext} .




FCA168 20 V_{o(EARO)} (dBV) 0 -20 $y = 2 \times +20$ -40-60 -40 -30 -20 -10 0 V_{i(RXAI)} (dBV) RX gain adjusted to 0 dB. No external resistor. VCTL = 00. $EXP_{out} = -7 dB at THD < 4\%$. Fig.7 Expander characteristic.

7.6 TX baseband

This section covers the TX audio path from pins MICI to TXO (see Fig.8). The input signal at pin MICI is AC-coupled. There is another AC-coupling at the microphone amplifier output.

The microphone amplifier is an inverting operational amplifier whose gain can be set by external resistors. The non-inverting input is connected to the internal reference voltage VB. External resistors are used to set the gain and frequency response. The TX baseband has a compressor with the characteristic shown in Fig.9. The ALC provides a 'soft' limit to the output signal swing as the input voltage increases slowly (i.e. a sine wave is maintained at the output). A hard limiter clamps the compressor output voltage at 1.26 V (peak-to-peak). The ALC and the hard limiter can be disabled via the microcontroller interface. The hard limiter is followed by a mute circuit. The TX gain is digitally programmable in 32 steps of 0.5 dB.

UAA3515A

7.7 Voltage regulator

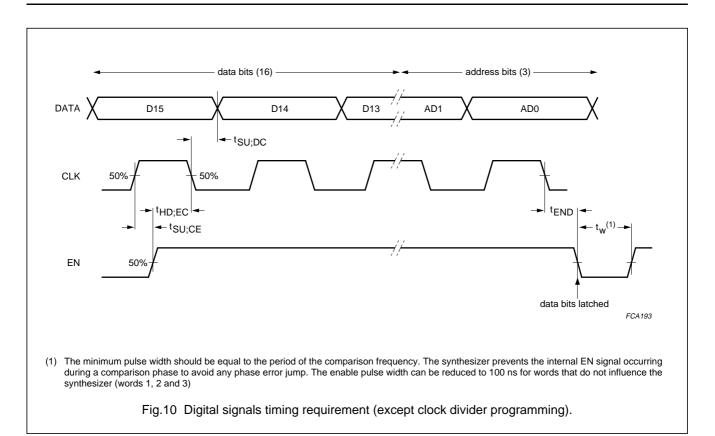
Pin V_{REG} provides the internal supply voltage for the RX and TX PLLs. It is regulated at 2.7 V nominal voltage. Two capacitors of 4.7 μ F and 100 nF must be connected to pin V_{REG} to filter and stabilize this regulated voltage. The tolerance of the regulated voltage is initially ±8% but is improved to ±2% after the internal bandgap voltage reference is adjusted through the microcontroller.

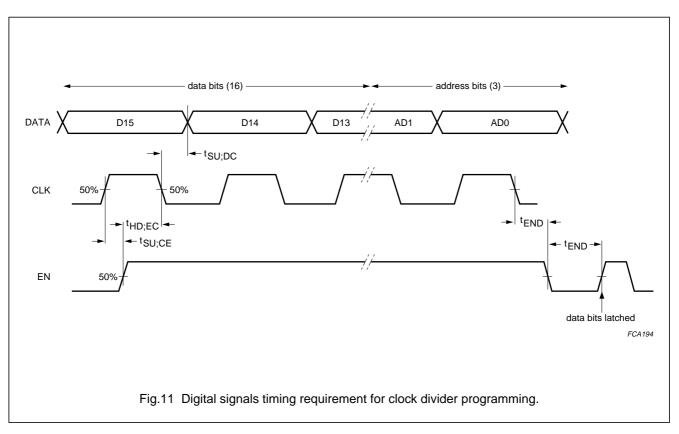
7.8 Low-battery detection

The low-battery detector measures the voltage level of the V_{CC} using a resistance divider and a comparator. One input of the comparator is connected to VB, the other to the middle point of the resistance divider. The comparator has a built-in hysteresis to prevent spurious switching. The precision of the detection depends on the divider accuracy, the comparator offset and the accuracy of the reference voltage VB. The output is multiplexed at pin CDLBD. When the battery voltage level is under the threshold voltage the output CDLBD is going LOW.

7.9 Microcontroller interface

The DATA, CLK and EN pins provide a 3-wire unidirectional serial interface for programming the reference counters, the transmit and receive channel divider-counters and the control functions.


The interface consists of 19-bit shift registers connected to a matrix of registers organized as 7 words of 16 bits (all are control registers). The leading 16 bits include the data D15 to D0. The trailing 3 bits set up the address AD2 to AD0. The data is entered with the most significant bit D15 first and the last bit is AD0.


Pins DATA and CLK are used to load data into the shift register. Figure 10 shows the timing required on all pins. Data is clocked into the shift registers on negative clock transitions.

A new clock divider ratio is enabled using an extra EN rising edge. Minimum hold time is 50 ns and during this time no clock cycle is allowed. These extra EN edges can be applied to all the data programmed but will have no effect on the serial interface programming.

The pins DATA, CLK and EN are supplied by $V_{\text{REG}}.$ The ESD protection diodes on these pins are connected to $V_{\text{CC}}.$

ıble ıble

7.9.1 DATA REGISTERS

Table 5 shows the data latches and addresses that select each of the registers; bit D15 is the MSB, this is written and loaded first.

 Table 5
 Data register addresses: note 1

ADDR	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
000	SBS	VCTL[1	and 0]	ear		RX gair	n control	[4 to 0]		SFS	DATA	F	M PLL V	CO tunir	ng [4 to 0	
				piece enable							phase					
001			RX main divider [9 to 0]													
010	note 2									refe	erence d	ivider [9 t	o 0]			
011		ТХ	prescal	er [5 to 0]			TX main divider [9 to 0]									
100	note 2	CLKO level	note 2	doubler enable		TX gain control [4 to 0]				TX mute	hard limiter enable	ALC disable	Xtal active	RX mute	note	e 2
101	V _{REG} enable ⁽³⁾		modes nd 0]	Xtal high		CDI	evels [4 to 0]			LBD levels [2 to 0]			LBD clock div [2 to 0] active			
110	PA output [2 to 0]			TX charge	RX charge	J J			test	mode [2 to 0] note 2		note 2	Xta	al tuning	cap [3 to	0]
				pump current	pump current											

Notes

- 1. With a 10 k Ω pull-up resistor connected to pin EN or the microcontroller, guarantees that V_{IH} > 0.9V_{CC} for the EN signal
- 2. Undefined zone; should always be programmed with 0.
- 3. In the inactive mode programming V_{REG} enable from 1 to 0 might reset all of the registers. We therefore recommend that this register be set to 1 and not to change it.

Table 6	Data register	default values	at power-on	(undefined zones	shown programmed with 0)
---------	---------------	----------------	-------------	------------------	--------------------------

ADDR	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
000	0	0	0	0	0	1	1	1	1	1	0	0	1	1	1	1
001	0	0	0	0	0	1	0	0	1	1	0	1	1	0	1	0
010	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
011	0	0	1	0	0	0	0	0	1	1	1	0	0	0	1	0
100	0	0	0	0	0	1	1	1	1	1	0	0	1	1	0	0
101	0	0	1	1	0	0	0	0	0	0	0	0	1	х	х	x
110	0	1	0	0	0	0	1	1	0	0	0	0	0	1	1	1

UAA3515A

Product specification

2002 Sep 09

BIT	DESCRIPTION
1	sideband select: (LO + IF) frequency is rejected
0	sideband select: (LO – IF) frequency is rejected
1	second filter select: the second IF filter is selected
0	second filter select: the second IF filter is deselected; note 2
1	clock output signal is regulated with respect to V_{REG} ; $V_{CLKOUT(p-p)} = 1 V$
0	clock output signal is regulated with respect to V_{CC} ; $V_{CLKOUT(p-p)} = 1.4 V$
1	crystal oscillator is active
0	crystal oscillator is disable
1	oscillator is in normal operation
0	oscillator is in low current consumption mode
1	DATA signal is inverted
0	DATA signal is not inverted (inverter bypassed)
1	ALC disabled
0	normal operation
1	hard limiter enabled
0	hard limiter disabled
1	RX channel muted
0	normal operation
1	TX channel muted
0	normal operation
1	V _{REG} enabled
0	V_{REG} disabled and tied to V_{CC} (in inactive mode)
1	voltage doubler is enabled
0	voltage doubler is disabled
1	earpiece enabled (can be used in RX mode for specific features)
0	earpiece disabled
	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Table 7 Data register content description

Notes

- 1. Sideband select enables the user to have the RX local oscillator in or out of the ISM band and to use the same IC in both handset and base.
- 2. A 4.5 dB insertion loss in the filter is assumed.
- 3. The clock output signal will be AC-coupled with the XTALI pin of the microcontroller. The external resonator from the microcontroller can be removed. Caution needs to be taken that no radiation is present on the PCB
- 4. In inactive mode, the crystal oscillator is a major contributor to the full current consumption. When Xtal high = 0, the current mode can be programmed to save current and in inactive mode this comes to full current consumption at 230 μ A (see Section 7.1.3). When Xtal high = 1, the crystal oscillator current is increased by 100 μ A.
- 5. Depending on the SBS-bit and the protocol chosen, the data may be inverted between the base and handset data transmission.
- 6. Minimum supply voltage for the IC is 2.9 V which limits the voltage swing on both charge pumps to approximately 2.3 V. With the voltage doubler or with an external high supply voltage on pin V_{CC(CP)}, the extra voltage availability can be used to enhance the tuning range of the VCOs variable capacitance diodes. To save current in inactive mode,

```
voltage doubler clock is the same as CLKO clock (can be programmed to \frac{\text{XTAL}}{128}); in other modes the voltage doubler
```

clock is XTALI divided by two.

UAA3515A

7.9.2 ACTIVE MODES

Table 8Active mode bit selection; note 1

BIT 1	BIT 0	DESCRIPTION
0	Х	inactive mode
1	0	RX mode
1	1	active mode

Note

1. See details on activated blocks in Section 7.1.2.

7.9.3 CLOCK OUTPUT DIVIDER

The crystal oscillator produces a reference frequency that is divided and buffered to drive a microcontroller. Table 9 gives the division ratios. The buffer is a CMOS output which can drive up to 20 pF at 10 MHz in both CLKO level modes. When the clock output signal is used, an external RC filter connected to pin CLKOUT can be added to limit clock waveform edges and therefore clock radiation on the printed-circuit board.

To supply the clock to the microcontroller and save current in the handset, an external low power resonator may be used and the clock output disabled (000) as well as the crystal oscillator (Xtal active = 0). In power saving mode, the divider ratio can be programmed down to 128 to reduce the microcontroller power consumption.

Table 9 Clock division register	
---	--

BIT 2	BIT 1	BIT 0	SELECT	CLOCK DIVISION RATIO
0	0	0	0	output disabled
0	0	1	1	2
0	1	0	2	2.5
0	1	1	3	4
1	0	0	4	1
1	0	1	5	128

UAA3515A

7.9.4 FM-PLL CENTRE FREQUENCY

This register allows the centre frequency of the VCO to be calibrated within the FM PLL to align the frequency as close as possible to the nominal 10.7 MHz frequency.

BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	SELECT	CENTRE FREQUENCY SHIFT (MHz)
0	0	0	0	0	0	3.0
0	0	0	0	1	1	2.8
0	0	0	1	0	2	2.6
0	0	0	1	1	3	2.4
0	0	1	0	0	4	2.2
0	0	1	0	1	5	2.0
0	0	1	1	0	6	1.8
0	0	1	1	1	7	1.6
0	1	0	0	0	8	1.4
0	1	0	0	1	9	1.2
0	1	0	1	0	10	1.0
0	1	0	1	1	11	0.8
0	1	1	0	0	12	0.6
0	1	1	0	1	13	0.4
0	1	1	1	0	14	0.2
0	1	1	1	1	15	0
1	0	0	0	0	16	-0.2
1	0	0	0	1	17	-0.4
1	0	0	1	0	18	-0.6
1	0	0	1	1	19	-0.8
1	0	1	0	0	20	-1.0
1	0	1	0	1	21	-1.2
1	0	1	1	0	22	-1.4
1	0	1	1	1	23	-1.6
1	1	0	0	0	24	-1.8
1	1	0	0	1	25	-2.0
1	1	0	1	0	26	-2.2
1	1	0	1	1	27	-2.4
1	1	1	0	0	28	-2.6
1	1	1	0	1	29	-2.8
1	1	1	1	0	30	-3.0
1	1	1	1	1	31	-3.2

UAA3515A

7.9.5 TX AND RX GAIN CONTROL REGISTERS

The TX and RX audio signal paths each have a programmable gain block. If a TX or RX voltage gain other than the nominal power-up default is desired it can be programmed through the microcontroller interface. The gain blocks can be used during final telephone testing to adjust electronically gain tolerances in the telephone system. The RX gain and the TX gain controls have steps of 0.5 dB covering a dynamic range of -7.5 to +8.0 dB. Measured on the earpiece amplifier output, RX gain steps are multiplied by 2 due to the expander slope. A dynamic range of -15 to +16 dB at the earpiece amplifier supports a volume control feature that can be implemented in the telephone and compensate for gain tolerances. Volume control can also be performed externally with hardware switches on various resistor values.

BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	GAIN CONTROL	RX GAIN (dB)	EARO (dB)	TX GAIN (dB)
0	0	0	0	0	0	-7.5	-15.0	-7.5
0	0	0	0	1	1	-7.0	-14.0	-7.0
0	0	0	1	0	2	-6.5	-13.0	-6.5
0	0	0	1	1	3	-6.0	-12.0	-6.0
0	0	1	0	0	4	-5.5	-11.0	-5.5
0	0	1	0	1	5	-5.0	-10.0	-5.0
0	0	1	1	0	6	-4.5	-9.0	-4.5
0	0	1	1	1	7	-4.0	-8.0	-4.0
0	1	0	0	0	8	-3.5	-7.0	-3.5
0	1	0	0	1	9	-3.0	-6.0	-3.0
0	1	0	1	0	10	-2.5	-5.0	-2.5
0	1	0	1	1	11	-2.0	-4.0	-2.0
0	1	1	0	0	12	-1.5	-3.0	-1.5
0	1	1	0	1	13	-1.0	-2.0	-1.0
0	1	1	1	0	14	-0.5	-1.0	-0.5
0	1	1	1	1	15	0	0	0
1	0	0	0	0	16	0.5	1.0	0.5
1	0	0	0	1	17	1.0	2.0	1.0
1	0	0	1	0	18	1.5	3.0	1.5
1	0	0	1	1	19	2.0	4.0	2.0
1	0	1	0	0	20	2.5	5.0	2.5
1	0	1	0	1	21	3.0	6.0	3.0
1	0	1	1	0	22	3.5	7.0	3.5
1	0	1	1	1	23	4.0	8.0	4.0
1	1	0	0	0	24	4.5	9.0	4.5
1	1	0	0	1	25	5.0	10.0	5.0
1	1	0	1	0	26	5.5	11.0	5.5
1	1	0	1	1	27	6.0	12.0	6.0
1	1	1	0	0	28	6.5	13.0	6.5
1	1	1	0	1	29	7.0	14.0	7.0
1	1	1	1	0	30	7.5	15.0	7.5
1	1	1	1	1	31	8.0	16.0	8.0

UAA3515A

7.9.6 CARRIER DETECTOR THRESHOLD PROGRAMMING

When the LBD active register = 0, the carrier detector is enabled and the signal CDout is sent to the output pin CDLBD. If RSSI is above the programmed RSSI level, CDLBD = 0; if RSSI is below the programmed level then CDLBD = 1. The carrier detector gives an indication if a carrier signal is present on the selected channel. The carrier detector has a nominal value and tolerance, if a different carrier detect threshold value is desired, this can be programmed through the microcontroller interface. If the carrier detect range is to be scaled, an external resistor should be connected between pin RSSI and ground. CD control = 10011 which corresponds to RSSI = 0.86 V (typical DC value).

Table 12	2 CD I	evels	register
----------	--------	-------	----------

BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	SELECT	RSSI VOLTAGE THRESHOLD DETECT (V)
0	0	0	0	0	0	0.1
0	0	0	0	1	1	0.14
0	0	0	1	0	2	0.18
0	0	0	1	1	3	0.22
0	0	1	0	0	4	0.26
0	0	1	0	1	5	0.3
0	0	1	1	0	6	0.34
0	0	1	1	1	7	0.38
0	1	0	0	0	8	0.42
0	1	0	0	1	9	0.46
0	1	0	1	0	10	0.5
0	1	0	1	1	11	0.54
0	1	1	0	0	12	0.58
0	1	1	0	1	13	0.62
0	1	1	1	0	14	0.66
0	1	1	1	1	15	0.7
1	0	0	0	0	16	0.74
1	0	0	0	1	17	0.78
1	0	0	1	0	18	0.82
1	0	0	1	1	19	0.86
1	0	1	0	0	20	0.9
1	0	1	0	1	21	0.94
1	0	1	1	0	22	0.98
1	0	1	1	1	23	1.02
1	1	0	0	0	24	1.06
1	1	0	0	1	25	1.1
1	1	0	1	0	26	1.14
1	1	0	1	1	27	1.18
1	1	1	0	0	28	1.22
1	1	1	0	1	29	1.26
1	1	1	1	0	30	1.3
1	1	1	1	1	31	1.34

UAA3515A

7.9.7 LOW-BATTERY DETECTION

When the LBD active register = 1, the low battery detector is enabled and the signal BDout passes to the output CDLBD. If V_{CC} is below the programmed LBD level, CDLBD = 0; if not below the programmed level, CDLBD = 1. The power-up default value is 110.

Table 13 LBD level register

BIT 2	BIT 1	BIT 0	SELECT	LOW BATTERY VOLTAGE DETECTION; NOMINAL VALUE (V)
0	0	0	0	3.5
0	0	1	1	3.4
0	1	0	2	3.3
0	1	1	3	3.2
1	0	0	4	3.1
1	0	1	5	3.0
1	1	0	6	2.9
1	1	1	7	2.8

7.9.8 POWER AMPLIFIER OUTPUT LEVEL

The power amplifier output register has two bits to modify the output power and one bit to disable the power amplifier (PA output bit 2 = 0). Duplexer matching (300 Ω to 50 Ω) is performed using a parallel inductive/series capacitive network. Output power on 50 Ω is specified in Table 14. To get power on the antenna, duplexer insertion loss should be removed. At maximum power, 3 mA extra DC current is consumed compared with the current at the minimum power settings.

BIT 2	BIT 1	BIT 0	SELECT	PA OUTPUT POWER (dBm)	2nd HARMONIC (dBm)	3rd HARMONIC (dBm)	4th HARMONIC (dBm)
0	Х	Х	-	PA inactive	—	_	-
1	0	0	0	1.0	-17	-327	-34
1	0	1	1	1.9	-19	-29	-34
1	1	0	2	2.5	-23	-33	-36
1	1	1	3	3.1	-23	-36	-40

Table 14 PA output register

7.9.9 PLL CHARGE PUMP CURRENT

Performance of the PLLs can be improved by increasing charge pump current. Then a programmable current on both RX and TX charge pump can be programmed. RX and TX charge pump currents are programmed independently. When the RX or TX charge pump current register = 0, charge pump current is 400 μ A; when it is set to 1, charge pump current is 800 μ A.

UAA3515A

7.9.10 VOLUME CONTROL

The register VCTL enables the volume control of the earpiece amplifier to be set to a predefined gain. This is achieved by switched feedback resistor R_{int} . The optional resistor R_{ext} , connected between pins EARI and EARO provides the hardware control.

Table 15	Volume control bit selection
----------	------------------------------

BIT 1	BIT 0	R _{int} (kΩ)	R _{ext} (kΩ)	G _{EAR} (dB)
0	0	14	none	0
0	1	24	none	4.7
1	0	41	none	9.3
1	1	70.2	none	14
1	1	70.2	100	9.4
1	1	70.2	33	4.1
1	1	70.2	15	-1

7.9.11 CRYSTAL TUNING CAPACITORS

On-chip crystal reference tuning is provided to compensate for frequency spread over process and temperature changes. An external capacitor should be connected at pin XTALI; the value of the capacitor should be approximately 3 pF less than the capacitance of pin XTALO. Internally, a programmable capacitance is available in parallel with the XTALI pin. Tuning capacitance values are in the range 0 to 4.5 pF; see Table 16.

BIT 3	BIT 2	BIT 1	BIT 0	SELECT	CAPACITANCE (pF)
0	0	0	0	0	0.2
0	0	0	1	1	0.5
0	0	1	0	2	0.8
0	0	1	1	3	1.1
0	1	0	0	4	1.4
0	1	0	1	5	1.7
0	1	1	0	6	2.0
0	1	1	1	7	2.3
1	0	0	0	8	2.6
1	0	0	1	9	2.9
1	0	1	0	10	3.2
1	0	1	1	11	3.5
1	1	0	0	12	3.8
1	1	0	1	13	4.1
1	1	1	0	14	4.4
1	1	1	1	15	4.7

Table 16 Xtal tuning cap register

UAA3515A

7.9.12 VOLTAGE REFERENCE ADJUSTMENT

An internal 1.5 V bandgap voltage reference provides the voltage reference for the low battery detect circuits, the V_{REG} voltage regulator, the VB reference and all internal analog references. In inactive mode, the adjustment is disabled.

BIT 2	BIT 1	BIT 0	SELECT	NOMINAL VOLTAGE REFERENCE
0	0	0	0	-7%
0	0	1	1	-5%
0	1	0	2	-3%
0	1	1	3	-1%
1	0	0	4	1%
1	0	1	5	3%
1	1	0	6	5%
1	1	1	7	7%

Table 17 Voltage reference adjust register

7.9.13 TEST MODE

Test mode bits are used only for test in production and application tuning. The test bits must be set to 0 for normal operation. Out-of-lock of synthesizers RX or TX can be monitored indirectly on pin CDLBD: the width of the 'glitch' that occurs with out-of-lock gives a direct indication of the phase error on the PLL RX and/or TX. To tune the external inductors of the RX and TX VCOs, a defined division ratio has to be programmed into the dividers, and then the image frequency of the VCO can be read on pin CDLBD. Test mode can also be used to check the division ratio: a frequency can be forced on the VCO or crystal pins and the programmed frequency can be read on pin CDLBD. There is a divide-by-2 stage before the CDLBD pin, therefore all frequencies are divided-by-2. When both charge pumps are in the high-impedance state, the VCOs can be measured as stand alone.

	-		
BIT 2	BIT 1	BIT 0	SELECT
0	0	0	normal operation
0	0	1	XOR between internal signals 'up' and 'down' of the RX synthesizer
0	1	0	XOR between internal signals 'up' and 'down' of the TX synthesizer
0	1	1	XOR between internal signals 'up' and 'down' of the RX or TX synthesizers
1	0	0	reference divider output divided by 2
1	0	1	prescaler and main divider RX divided by 2
1	1	0	prescaler and main divider TX divided by 2
1	1	1	both synthesizer charge pumps are in high-impedance-state

Table 18 Test mode register

UAA3515A

8 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{CC}	supply voltage	-0.3	+6.0	V
T _{stg}	storage temperature	-55	+125	°C
T _{amb}	ambient temperature	-20	+80	°C

9 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices. Do not operate or store near strong electrostatic fields.

Meets Class 1 ESD test requirements (human body model) in accordance with "EIA/JESD22-A114-B (June 2001)" and class A ESD test requirements (machine model) in accordance with "EIA/JESD22-A115-B (October 1997)".

10 THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	68	K/W

UAA3515A

11 CHARACTERISTICS

 $V_{CC} = V_{CC(PS)} = V_{CC(ATX)} = V_{CC(ARX)} = V_{CC(IF)} = V_{CC(BLO)} = V_{CC(MIX)} = V_{CC(LNA)} = 3.3 \text{ V}; \text{ T}_{amb} = 25 \text{ °C}; \text{ unless otherwise specified.}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies			1	1	-	•
V _{CC}	$\begin{array}{c} \mbox{positive supply voltage to} \\ \mbox{pins } V_{CC(PS)}; V_{CC(ATX)}; \\ V_{CC(ARX)}; V_{CC(IF)}; \\ V_{CC(BLO)}; V_{CC(MIX)}; \\ V_{CC(LNA)} \end{array}$		2.9	3.3	5.5	V
PLL VOLTAGE F	REGULATOR					
V _{o(VREG)}	regulated output voltage	V _{REG} enable = 0 V _{REG} enable = 1 inactive mode before V _{ref} adjustment	- 2.5 2.5	V _{CC} 2.7 2.7	- 2.9 2.9	V V V
		after V _{ref} adjustment	2.65	2.7	2.75	V
I _{o(VREG)}	output current	$C_{VREG} = 1 \mu F$	-	-	3	mA
LOW BATTERY	DETECTION: LBD active = 1					
V _{LBD}	detection voltage range		2.8	_	3.5	V
ΔV_{LBD}	number of detection voltage steps		-	8	_	steps
V _{hys}	comparator hysteresis	$[V_{CC(high)} - V_{CC(low)}] \times \frac{V_{VB}}{V_{th}}$	-	18	-	mV
$\Delta V_{CC}/V_{CC}$	LBD accuracy	measured after V _{ref} adjusted; LBD = 010	-	0.5	5	%
Receiver sec	tion				·	·
LNA AND IMAG	E REJECTION MIXER; $f_{i(RX)} = 90$	03 MHz				
R _{i(RX)}	RF input resistance	balanced	_	110	_	Ω
C _{i(RX)}	RF input capacitance	balanced	_	0.7	_	pF
f _{i(RX)}	RF input frequency		902	903	928	MHz
RL _{i(RX)}	return loss on match RF input	note 1	10	-	_	dB
G _{conv(p)(RX)}	conversion power gain	balun input to MIXO pin; matched to 330 Ω	-	22	_	dB
CP1 _{RX}	1 dB input compression point	note 1	-	-23	-	dBm
IP3 _{RX}	3 rd order intercept point		_	-13	_	dBm
NF _{RX}	overall noise figure, RF front end	IF section excluded	-	4	5	dB
IR	image frequency rejection	in band of interest	26	45	-	dB
R _{L(RX)}	IF resistive output load	on pin MIXO	_	330	_	Ω
C _{L(RX)}	IF capacitive output load	on pin MIXO	-	_	3	pF

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
IF AMPLIFIER SE	ECTION: f ₀ = 10.7 MHz				-	
G _{IFAMP1}	voltage or power gain of first IF amplifier	$330 \ \Omega$ matched input and output; SFS = 1; measured at amplifier output	-	22.5	-	dB
NF _{IFAMP1}	noise figure of first IF amplifier	330 Ω matched input and output	-	7	-	dB
G _{IFAMP2}	voltage or power gain of second IF amplifier	330 Ω matched input and output; SFS = 1; measured at amplifier output	-	25	-	dB
NF _{IFAMP2}	noise figure of second IF amplifier	330 Ω matched input and output	-	14	-	dB
G _{IFAMP}	gain of IF amplifier section	330 Ω matched input and output; SFS = 0	-	43	-	dB
NF _{IFAMP}	noise figure of IF amplifier section		-	7.5	-	dB
PLL DEMODULA	TOR: $f_0 = 10.7 \text{ MHz}; f_{dev} = \pm 2$	25 kHz; f _{mod} = 1 kHz	•			•
$\Delta f_{VCO} / \Delta V$	VCO gain	after calibration	-	760	-	kHz/V
f _{VCO}	VCO centre frequency (free running)	open loop; all conditions	7.0	10.7	15.0	MHz
Δf_{VCO}	VCO frequency adjustment	see Table 10	-	32	-	steps
f _{VCO(step)}	VCO centre frequency step size		-	200	-	kHz
BW _{demod}	demodulator –3 dB bandwidth	loop filter: see note 2	10	-	-	kHz
f _{dev(max)}	maximum frequency deviation		-	-	±75	kHz
R _{L(DETO)}	demodulator external load on pin DETO		5	-	_	kΩ
V _{o(DETO)} (RMS)	PLL output voltage on pin DETO (RMS value)	TX mode; $R_{L(DETO)} = 10 \text{ k}\Omega$; amplifier gain = 10; note 3	-	100	350	mV
V _{o(DETO)(DC)}	PLL output DC voltage on pin DETO	microcontroller adjustable DC component	1.2	1.4	1.6	V
FM RECEIVER:	f ₀ = 903 MHz; f _{dev} = ±25 kHz	$r; f_{mod} = 1 \text{ kHz}; R_{L(EARO)} = 150 \Omega$	in series v	vith 10 μF (all with CC	CITT filter)
S _{RFI}	receiver sensitivity	measured at antenna; duplexer insertion loss = 3 dB; input level for 12 dB SINAD; bandwidth = 100 kHz				
		RX mode TX mode; PA = 10; V _{EARO(RMS)} = 200 mV; TX to RX duplexer isolation is 35 dB minimum	-	–115 –113.5	-	dBm dBm

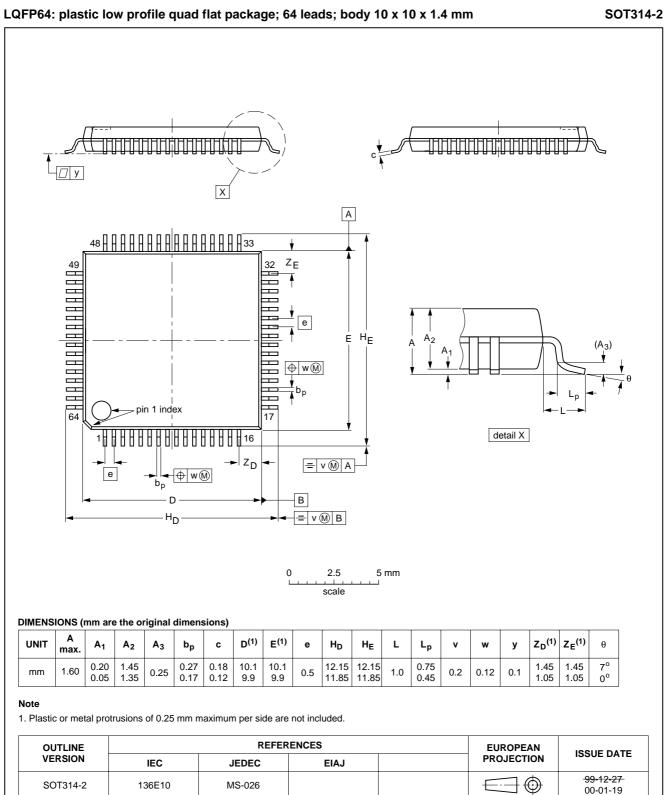
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
S/N _{FM}	signal-to-noise ratio	TX mode; $V_{i(RF)} = -80$ and -40 dBm; PA = 10; CLKO level = 0; $V_{EARO(RMS)} = 200$ mV	40	45	-	dB
THD _{FM}	total harmonic distortion	TX mode; $f_{dev} = \pm 60 \text{ kHz}$; $V_{i(RF)} = -80 \text{ and } -40 \text{ dBm}$; PA = 10; CLKO level = 0; $V_{EARO(RMS)} = 500 \text{ mV}$; measured without CCITT filter	-	0.6	2	%
RSSI AND CAF	RRIER DETECTION: $VB = 1.5 V$		•			
RSSI	output current dynamic range		-	68	-	dB
V _{OH}	HIGH-level output voltage at pin CDLBD	$V_{i(LIM)(RMS)} = 0 \text{ mV}; \text{ CD} = 10011$	0.9V _{CC}	-	-	V
V _{OL}	LOW-level output voltage at pin CDLBD	V _{i(LIM)} = 0.1 V (RMS); CD = 10011	_	_	0.1V _{CC}	V
R _{int}	internal resistance between pin RSSI and V _{CC}		_	175	_	kΩ
V _{det}	voltage detection range		0.05	-	1.6	V
ΔV_{det}	voltage detection step		-	40	_	mV
V _{hys}	hysteresis		-	45	-	mV
V _{th(CD)}	carrier sense threshold	microcontroller programmable	-	32	-	steps
DATA COMPARA	ATOR					
V _{i(DATC)(p-p)}	comparator input signal (peak-to-peak value)		100	-	-	mV
V _{hys(DATC)}	hysteresis		25	40	75	mV
V _{th(DATC)}	pin DATI threshold voltage		-	V _{CC} – 0.9	-	V
Z _{i(DATC)}	pin DATI input impedance		150	240	_	kΩ
V _{OH}	HIGH-level output voltage	$V_{i(DATI)} = V_{CC} - 1.4 V$	$0.9V_{CC}$	-	-	V
V _{OL}	LOW-level output voltage	$V_{i(DATI)} = V_{CC} - 0.4 V$	-	-	0.1V _{CC}	V
l _{OHsink}	pin DATO output sink current		-	40	-	μA
Transmitter s	section					
SUMMING AMP	LIFIER					
V _{o(p-p)}	pin MODO output voltage (peak-to-peak value)		-	94	240	mV
R _{fb}	external feedback resistor	between pins MODI and MODO	10	-	-	kΩ
V _{bias}	pin MODI bias voltage		-	2.2	_	V

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
TX VOLTAGE-CO	ONTROLLED OSCILLATOR AND F	OWER AMPLIFIER		-	-	-
f _{VCO(TX)}	VCO free running frequency	note 1	-	910	-	MHz
Q _{L(VCO)(TX)}	quality factor of external inductor	L = 3.9 nH; f _{VCO} = 902 to 928 MHz	30	-	_	
$\Delta f_{VCO(TX)}$	VCO gain	$V_{TXLF} = 0.5 V$	_	50	-	MHz/V
ΔV_{TXLF}		$V_{TXLF} = 1.5 V$	-	25	-	MHz/V
$\frac{\Delta f_{VCO(TX)}}{\Delta V_{mod}}$	VCO modulation gain	$V_{MODO} = 2.2V$	_	530	-	kHz/V
	VCO and power amplifier phase noise	$\begin{array}{l} P_{o} = 0 \text{ dBm};\\ f_{carrier} = 925.6 \text{ MHz};\\ TX \text{ to } RX \text{ duplexer isolation}\\ is 35 \text{ dB minimum}; L_{ext} = 3.9 \text{ nH}\\ (both \text{ base and handset}); \text{ loop}\\ filter: \text{ see note } 4 \end{array}$				
		f _{offset} = 20 MHz	-139	-150	-	dBc/Hz
		f _{offset} = 10 kHz	-	-85	-	dBc/Hz
		f _{offset} = 1 kHz	-	-60	-	dBc/Hz
P _{o(PA)}	PA output power range		_	2	-	dB
$\Delta P_{o(PA)}$	PA output power adjustment		-	4	-	steps
P _{o(PA)(max)}	PA maximum output power	$R_o = 50 \Omega$, $L_P = 22 nH$, $C_S = 1.6 pF$ (see Fig.4); remove duplexer insertion loss to get power on the antenna	_	1	_	dBm
TRANSMIT SYS	TEM	•		•		
THD _{TX}	total harmonic distortion after demodulation	$f_{dev} = \pm 60 \text{ kHz};$ $V_{MODO} = 225 \text{ mV (p-p)};$ CCITT filter included	_	1	2	%
$\alpha_{ct(RX-TX)}$	RXVCO crosstalk on PA output with respect to output power	note 1	_	-45	-	dBc
Synthesizer		•				
CRYSTAL OSCIL	LLATOR: external capacitor on	pin XTALO is 8.2 pF; on pin XTAL	I is 5.6 pl	F (indicative	e)	
f _{(i)XTAL}	crystal input frequency		4	10.24	20	MHz
C _{XTALI}	input capacitance on pin XTALI	indicative; XTAL tuning cap = 8 (see Table 5)	-	4	-	pF
C _{XTALO}	input capacitance on pin XTALO	indicative	-	1.5	-	pF
ΔC_{TUNE}	crystal tuning capacitance range	on XTALI pin	-	4.5	_	pF

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
N _{TUNE}	number of capacitance tuning steps		-	16	_	steps
REFERENCE AN	ND CLOCK DIVIDER					
RDR	reference divider ratio		8	_	1023	
CDR	clock divider ratio	5 steps (2, 2.5, 4, 1 and 128)	1	_	128	
C _{L(CLKOUT)}	clock output load capacitance	external to pin CLKOUT	-	-	20	pF
V _{CLKOUT(p-p)}	CLKOUT voltage swing	CLKO level = 0	-	1.4	-	V
	(peak-to-peak value)	CLKO level = 1	-	1	_	V
t _{sw(f1-f2)}	switching time from frequency f1 to f2		_	2 f2	_	S
RF TX AND RX	V PRESCALER AND MAIN DIVID	ERS		1		
f _{RF}	RF input frequency		902	903	928	MHz
R _{PDR}	prescaler divider ratio		64	_	127	
R _{MDR}	main divider ratio		8	_	1023	
Charge pump	current	-	1	4		
I _{RXCPsink}	RX charge pump sink current	RXCPI = 0	_	400	_	μA
		RXCPI = 1	_	800	_	μΑ
I _{RXCPsource}	RX charge pump source	RXCPI = 0	_	-400	_	μA
	current	RXCPI = 1	_	-800	_	μA
I _{TXCPsink}	TX charge pump sink	TXCPI = 0	_	400	-	μA
	current	TXCPI = 1	_	800	-	μA
I _{TXCPsource}	TX charge pump source	TXCPI = 0	-	-400	-	μA
	current	TXCPI = 1	-	-800	-	μA
RX VCO						
f _{VCO}	oscillator free running frequency	note 1	-	910	-	MHz
Q _{L(VCO)(RX)}	external inductor quality factor	f = 920 MHz; L = 3.9 nH	30	-	_	
$\frac{\Delta f_{VCO(RX)}}{\Delta V_{RXLF}}$	VCO gain	L _{ext} = 4.7 nH at 890 MHz (3.9 nH for 935 MHz operation)				
- KXLF		$V_{RXLF} = 0.5 V$	_	55	_	MHz/V
		V_{RXLF} = 1.5 V	_	30	_	MHz/V
N _{VCO(RX)}	VCO RX phase noise; (indicative: cannot be measured directly)	$ f_{carrier} = 892.3 \text{ MHz}; \\ L_{ext} = 4.7 \text{ nH} \\ (3.9 \text{ nH for } 935 \text{ MHz operation}); \\ loop filter: see note 5 $				
		f _{offset} = 1 kHz	-	-58	-	dBc/Hz
		f _{offset} = 10 kHz	-	-82	-	dBc/Hz
		f _{offset} = 100 kHz	-	-102	-	dBc/Hz

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VOLTAGE DOUBL	ER (Doubler enable = 1)			1		
V _{CC(CP)}	charge pump supply voltage from voltage doubler	V _{CC} = 3 V	-	5.2	-	V
I _{CC(CP)}	voltage doubler current	PLL locked				
	consumption	RX or TX mode	-	300	-	μA
		CDR = 128	_	130	-	μA
RX baseband						
set by VCTL to		_d = 1 kHz; RX gain set for 0 dB at istor and C _{ext} = 560 pF; measure				
ΔG _{RX}	RX gain adjustment	on RX gain amplifier	-7.5	-	+8	dB
	range	on EARO	-15	-	+16	dB
$\Delta G_{RX(steps)}$	RX gain adjustment steps	programmable through microcontroller interface	-	32	-	steps
$\Delta G_{RX(mute)}$	RX gain with mute on	$V_{i(RXAI)} = -20 \text{ dBV}$	-	-70	-60	dB
G _{EXP}	expander gain	$V_{i(RXAI)} = -20 \text{ dBV}$	-1	0	+1	dB
		$V_{i(RXAI)} = -30 \text{ dBV}$	-22	-20	-18	dB
		$V_{i(RXAI)} = -35 \text{ dBV}$	-34	-30	-26	dB
V _{i(RXAI)(max)}	maximum input voltage	THD < 4%	_	-13	-	dBV
V _{o(EXP)(max)}	maximum expander output voltage (indicative: cannot be measured directly)	indicative; THD < 4%	-	-7	-	dBV
N _{RX}	RX audio path noise	BW = 300 Hz to 3.4 kHz	_	-83	_	dBVp
Z _{i(RXAI)}	input impedance	note 3				
. ,		TX mode	_	15	_	kΩ
		RX mode	100	_	_	kΩ
t _{att(EXP)}	expander attack time	C _{ECAP} = 0.47 μF	_	2.0	_	ms
t _{rel(EXP)}	expander release time	C _{ECAP} = 0.47 μF	_	5.0	-	ms
$\alpha_{ct(TX-RX)}$	TX compressor to RX expander crosstalk attenuation	measured between pins CMPI and EARO; $V_{RXAI} = 0$; $V_{CMPI} = -20 \text{ dBV}$	-	80	-	dB
VEARO(max)(p-p)	maximum output voltage (peak-peak value)	THD < 4%	-	2.2	-	V
R _{L(EARO)}	load resistance on pin EARO for stable earpiece amplifier	in series with 10 μF capacitor	-	0.15	100	kΩ
G _{EAR}	earpiece amplifier gain	R _{int} = 14 kΩ	-1	0	+1	dB
27 m	set by internal resistors	$R_{int} = 24 \text{ k}\Omega$	3.7	4.7	5.7	dB
	without external					
	without external components (R _{ext} and	$R_{int} = 41 \ k\Omega$	8.3	9.3	10.3	dB

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
G _{EAR(dyn)}	dynamic earpiece amplifier gain		13	14	15	dB
THD _{ARX}	audio receiver total harmonic distortion	$V_{i(RXAI)} = -20 \text{ dBV}$	-	0.2	2	%
TX baseband				·	·	
MICROPHONE AI	MPLIFIER: V_{VB} = 1.5 V; f_{mod} =	1 kHz				
V _{MICO(max)}	maximum output voltage	R _L = 10 kΩ; THD < 4%	-12	-	-	dBV
ΔG_V	voltage gain range		0	-	34	dB
TX audio path	(see Fig.8): V _{VB} = 1.5 V; f _{mo}	_d = 1 kHz; TX gain set for 10 dB a	at V _{CMPI} =	–30 dBV		-
G _{COMP}	compressor gain level	ALC disable = 1; hard limiter enable = 0	9	10	11	dB
ΔG_{COMP}	change in compressor	V _{CMPI} = -10 dBV	8	10	12	dB
	gain referenced to $V_{CMPI} = -30 \text{ dBV}$	V _{CMPI} = -50 dBV	-12	-10	-8	dB
G _{COMP(max)}	maximum compressor gain	V _{CMPI} = -70 dBV	_	23	-	dB
V _{HLIM(p-p)}	hard limiter output voltage (peak-to-peak value)	ALC disable = 1; hard limiter enable = 1; $V_{CMPI} = -4 \text{ dBV}$	-	1.26	-	V
V _{TXO(max)}	maximum output voltage range	ALC disable = 0				
		$V_{CMPI} = -12 \text{ dBV}$	_	-12.5	-	dBV
		$V_{CMPI} = -10 \text{ dBV}$	_	-12.3	-	dBV
		V _{CMPI} = –2.5 dBV	_	-11.5	-	dBV
THD _{COMP}	compressor total harmonic distortion	ALC disable = 1; V _{CMPI} = -10 dBV	-	0.3	1	%
Z _{CMPI}	input impedance on pin CMPI		-	15	-	kΩ
t _{att(COMP)}	compressor attack time	$C_{CCAP} = 0.47 \ \mu F$	_	4.0	-	ms
t _{rel(COMP)}	compressor release time	$C_{CCAP} = 0.47 \ \mu F$	-	8.0	-	ms
$\alpha_{ct(RX-TX)}$	RX expander to TX compressor crosstalk attenuation	measured between pins RXAI and TXO; $V_{CMPI} = 0$; $V_{RXAI} = -10 \text{ dBV}$	_	65	_	dB
ΔG _{TX}	TX gain adjustment range	programmable through microcontroller interface	-7.5	-	+8	dB
$\Delta G_{TX(steps)}$	TX gain adjustment steps	programmable through microcontroller interface	-	32	-	steps
$\Delta G_{TX(mute)}$	TX gain with mute on	ALC disable = 1; $V_{CMPI} = -10 \text{ dBV}$	-	-70	-60	dB
Z _{o(TXO)}	output impedance at pin TXO		-	500	-	Ω


UAA3515A

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Microcontrol	ler interface		-	1	-1	
DC CHARACTE	RISTICS FOR DIGITAL PINS					
V _{IL}	LOW-level input voltage	serial interface	_	_	0.5	V
V _{IH}	HIGH-level input voltage	serial interface	$\frac{V_{VREG}}{1.5}$	-	V _{CC}	V
IIL	LOW-level input current	serial interface; V _{IL} = 0.3 V	-5	_	_	μA
IIH	HIGH-level input current	serial interface; V _{IH} = V _{REG} – 0.3 V	-	-	5	μA
I _{OL}	LOW-level output current	pin CDLBD	20	-	-	μA
V _{OL}	LOW-level output voltage	pin CDLBD; $R_L = 470 \text{ k}\Omega$	-	_	0.1V _{CC}	V
V _{OH}	HIGH-level output voltage	pin CDLBD; $R_L = 470 \text{ k}\Omega$	0.9V _{CC}	-	-	V
Ci	input capacitance	serial bus	-	-	8	pF
Co	output capacitance	pins RXPD and TXPD	-	_	8	pF
SERIAL INTERF	ACE TIMING; CLK, DATA and E	N (see Fig.10)			·	•
t _{su(CLK-EN)}	clock to enable set-up time	50% signal level	50	-	-	ns
t _{su(DATA} -CLK)	input data to clock set-up time	50% signal level	50	-	-	ns
t _{h(EN-CLK)}	enable to clock hold time	50% signal level	50	-	-	ns
f _{CLK}	clock frequency		-	_	3	MHz
t _r	input rise time	10% to 90%	-	-	50	ns
t _f	input fall time	10% to 90%	-	-	50	ns
t _{END}	delay from last falling clock edge		100	-	-	ns
t _w	enable pulse width	see Fig.10	1 fcomp	-	-	ns
t _{strt}	microcontroller interface start-up time	90% of V _{VREG} to DATA, CLK and EN present	-	-	200	μs

Notes

- 1. Measured and guaranteed only on the Philips UAA3515A test board.
- 2. Loop filter: $C_1 = 1.8 \text{ nF}$; $R_2 = 4.7 \text{ k}\Omega$; $C_2 = 150 \text{ nF}$ (see "Report CTT01001", available on request).
- 3. RXAI level will be higher in RX mode than in TX mode.
- 4. Loop filter: $C_1 = 3.9 \text{ nF}$; $R_2 = 6.8 \text{ k}\Omega$; $C_2 = 47 \text{ nF}$ (see "Report CTT01001", available on request).
- 5. Loop filter: $C_1 = 470 \text{ nF}$; $R_2 = 1.8 \text{ k}\Omega$; $C_2 = 4.7 \mu\text{F}$ (see "Report CTT01001", available on request).

12 PACKAGE OUTLINE

UAA3515A

13 SOLDERING

13.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"Data Handbook IC26; Integrated Circuit Packages"* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

13.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 220 °C for thick/large packages, and below 235 °C for small/thin packages.

13.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is **preferred** to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

13.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^\circ\text{C}.$

UAA3515A

13.5 Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD			
FACKAGE	WAVE	REFLOW ⁽¹⁾		
BGA, HBGA, LFBGA, SQFP, TFBGA	not suitable	suitable		
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, SMS	not suitable ⁽²⁾	suitable		
PLCC ⁽³⁾ , SO, SOJ	suitable	suitable		
LQFP, QFP, TQFP	not recommended ⁽³⁾⁽⁴⁾	suitable		
SSOP, TSSOP, VSO	not recommended ⁽⁵⁾	suitable		

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

UAA3515A

14 DATA SHEET STATUS

DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

15 DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

16 DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

UAA3515A

NOTES

UAA3515A

NOTES

UAA3515A

NOTES

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2002

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

403506/02/pp44

Date of release: 2002 Sep 09

Document order number: 9397 750 09569

SCA74

Let's make things better.

Philips Semiconductors